Math, asked by a00riya000, 5 months ago

In the given figure,l || m & n is a transversal. If m angle 5 = (2x +40)° and m angle 1=( 3x+20)°, find the value of x and m angle 5.​

Answers

Answered by kulkarninishant346
1

\large \red{{\boxed{\sf{Question:-}}}}

➡️In the given figure,l || m & n is a transversal. If m angle 5 = (2x +40)° and m angle 1=( 3x+20)°, find the value of x and m angle 5.

 \large \red{{ \boxed{\sf{Answer:-}}}}

 \large \red{{ \boxed{\sf{Given:-}}}}

⬇️ABCD is a parallelogram. If <A=(3x-20°) and<C=(x+40°)

➡️∠A=(3x−20)

➡️∠C=(x+40)

➡️In a parallelogram opposite angles are equals

➡️3 x - 20 = x + 40

➡️3 x - x = 40 + 20

➡️2 x = 60

➡️x= 30 degrees

➡️ABCD is a parallelogram.

➡️That means <A = <C

➡️3x-20 = x+40

➡️2x = 60

➡️x = 30

➡️That means <A = <C = 70°

➡️Also <B = <D = (360–70*2)/2 = 110°

➡️Answer for your question

 \large \red{{ \boxed{\sf{Your Answer:-}}}}

x = 30°

Similar questions