Math, asked by arnab80326, 9 months ago

In the given figure, l || m. Find the value of x.
angle a is 52⁰ and angle b is 43⁰

Attachments:

Answers

Answered by BrainlyConqueror0901
30

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=95\degree}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given:}} \\   \tt:  \implies CL|| DM\\  \\ \tt:   \implies  \angle DBO = 43 \degree \\  \\ \tt:   \implies  \angle CAO = 52 \degree \\  \\ \red{ \underline \bold{To \: Find:}} \\  \tt:  \implies  \angle AOB =?

• According to given question :

 \tt \circ \: Let \: a \: line \: bisecting \:  \angle \: AOB \: and  \\  \tt \:  \:  \: line \:  parallel \: to \: line  \: CL \: and \: DM \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies   \angle CAO= \angle AOF\:  \:  \:  \:  \: (Alternate \: angle) \\  \\ \tt:  \implies  52 \degree =  \angle AOF \\  \\  \green{\tt:  \implies  \angle AOF= 52 \degree} \\   \\  \bold{Similarly : } \\ \tt:  \implies   \angle DBO =  \angle BOF \:  \:  \:  \:  \: (Alternate \: angle) \\  \\ \tt:  \implies  43 \degree =  \angle BOF

 \green{\tt:  \implies  \angle BOF = 43 \degree} \\  \\  \bold{For \: finding \: value } \\ \tt:  \implies  \angle  AOB=  \angle AOF +  \angle BOF\\  \\ \tt:  \implies x = 52 \degree + 43 \degree \\  \\  \green{\tt:  \implies x = 95 \degree} \\  \\ \green{\tt \therefore Value \: of \: x \: is \: 95 \degree}

Answered by Rudranil420
56

Answer:

✍Given:

✏CL∣∣DM

✏∠DBO=43°

✏∠CAO=52°

✍ToFind:

✏∠AOB=?

✍ ATQ:-

✏ Let a line bisecting ∠AOB and line parallel to line CL and DM

➡ As we know that,

✏∠CAO=∠AOF(Alternate angle)

=> 52° = ∠AOF

=> ∠AOF = 50°

➡ Similarly,

=> ∠DBO = ∠BOF ( alternate angle)

=> 43° = ∠BOF

=> ∠BOF = 43°

➡ Finding the values:-

=> ∠AOB = ∠AOF + ∠BOF

=> x = 52° + 43°

=> x = 95°

✍ Hence, the value of x is 95°

Similar questions