Math, asked by Lakshmiashok3068, 10 months ago

In the given figure, lines AB, CD and EF intersect at O. Find the measure of ∠COF

Answers

Answered by Anonymous
183

Given

∠AOE = 400 & ∠BOD = 350

Clearly ∠AOC = ∠BOD [Vertically opposite angles]

⇒ ∠AOC = 350 Ans.

∠BOF = ∠AOE [Vertically opposite angles]

⇒ ∠BOF = 400 Ans.

Now, ∠AOB = 1800 [Straight angles]

⇒ ∠AOC + ∠COF + ∠BOF = 1800 [Angles sum property]

⇒ 350 + ∠COF + 400 = 1800

⇒ ∠COF = 1800 - 750 = 1050

Now, ∠DOE = ∠COF [Vertically opposite angles] ∴ ∠DOE = 1050

<marquee behaviour-move> <font color ="red"><h1>❣️☺️itz PRAKASH☺❣️</h1></marquee>

<marquee> <font color ="green"><h1>✌️♥️ Follow me♥️✌️</marquee>

☺️Mark my answer as BRAINLIEST ☺️ I

Answered by preet123456789
6

Answer:

here is ur ans ❤❤⭐

AOE = 400 & ∠BOD = 350

Clearly ∠AOC = ∠BOD [Vertically opposite angles]

⇒ ∠AOC = 350 Ans.

∠BOF = ∠AOE [Vertically opposite angles]

⇒ ∠BOF = 400 Ans.

Now, ∠AOB = 1800 [Straight angles]

⇒ ∠AOC + ∠COF + ∠BOF = 1800 [Angles sum property]

⇒ 350 + ∠COF + 400 = 1800

⇒ ∠COF = 1800 - 750 = 1050

Now, ∠DOE = ∠COF [Vertically opposite angles] ∴ ∠DOE = 1050

❣️

Similar questions