In the given figure,lines XY and LM intersect at O. If ∠XOL = a, ∠LOP=b, ∠POY=90°, ∠XOM=c and a:b = 2:3, find the value of c.
Answers
━━━━━━━━━━━━━━━━━━━━━━━━━
In the given figure,lines XY and LM intersect at O. If ∠XOL = a, ∠LOP=b, ∠POY=90°, ∠XOM=c and a:b = 2:3, find the value of c.
━━━━━━━━━━━━━━━━━━━━━━━━━
It is given that a:b = 2:3.
So, let a=(2x)° and b=(3x°).
In the given figure OP stands on line XY.
∴ ∠XOP + ∠POY = 180°
⟹ ∠XOL + ∠LOP + 90° = 180°⠀⠀[∴ ∠POY=90°]
⟹ a + b + 90 = 180
⟹ a + b = 90
⟹ 2x + 3x =90 =5x=90=x =18.
Again,ray OX stands ob line LM.
∠LOX + ∠XOM = 180°
⟹ a+c=180°
⟹ 36° + c =180° ⟹ c=(180°-36°)=144°
Hence,c=144°.
━━━━━━━━━━━━━━━━━━━━━━━━━
Answer:
In the given figure,lines XY and LM intersect at O. If ∠XOL = a, ∠LOP=b, ∠POY=90°, ∠XOM=c and a:b = 2:3, find the value of c.
━━━━━━━━━━━━━━━━━━━━━━━━━
\huge{\underline{\underline{\sf{\orange{ < /p > < p > Solution:-}}}}}
</p><p>Solution:−
It is given that a:b = 2:3.
So, let a=(2x)° and b=(3x°).
In the given figure OP stands on line XY.
∴ ∠XOP + ∠POY = 180°
⟹ ∠XOL + ∠LOP + 90° = 180°⠀⠀[∴ ∠POY=90°]
⟹ a + b + 90 = 180
⟹ a + b = 90
⟹ 2x + 3x =90 =5x=90=x =18.
\begin{gathered}\therefore \: a = (2x)\degree = (2 \times 18\degree) = 36\degree \: and \: b = (3x)\degree = (3 \times 18)\degree = 54\degree. \\ \end{gathered}
∴a=(2x)°=(2×18°)=36°andb=(3x)°=(3×18)°=54°.
Again,ray OX stands ob line LM.
∠LOX + ∠XOM = 180°
⟹ a+c=180°
⟹ 36° + c =180° ⟹ c=(180°-36°)=144°
Hence,c=144°.
Step-by-step explanation: