Math, asked by Kavimehta, 1 year ago

) In the given figure, O is the centre of the circle,
angle BAD = 75° and chord BC = chord CD.
Find (i) angle BOC (ii) angle OBD, (iii) angle BCD.

Attachments:

Answers

Answered by suchindraraut17
11

i)∠BOC =45°,ii)∠OBD=67.5°,iii)∠BCD=75°

Step-by-step explanation:

Given,∠BAD=75°,BC=CD

Construction:Join BD and OC.

∠BOD=2∠BAD [∵Angle subtended at centre is double the angle subtended on circumference]

∠BOD=2×75°

∠BOD=150°

Similarly,∠BOD=2∠BCD

               ∠BCD=1/2∠BOD

                         =1/2×150°

              ∠BCD=75°...............(1)

Now,In ΔBOD,

OB=OD[Radius of circle ]

⇒∠OBD=∠ODB...........(2) [Angle opposite to equal side are always equal]

Now,In ΔOBD,

∠OBD+∠ODB+∠BOD=180° {By angle sum property of triangle]

∠ODB+∠ODB+150°=180° [From equation(2)]

2∠ODB=180°-150°

2∠ODB=30°

∠ODB=30°/2

∠ODB=15°=∠OBD

Now,it is given that,BC=CD

⇒∠CBD=∠CDB [Angle opposite to equal side are always equal]

Also,In ΔBCD,

∠BCD+∠CDB+∠CBD=180°[By angle sum property of triangle]

∠BCD+∠CDB+∠CDB=180°

75°+2∠CDB=180°

2∠CDB=180°-75°

∠CDB=\frac{105}{2}°

        52.5°

∠CDB=∠CBD=52.5°

Now,∠OBD=∠OBD+∠CBD

                 =15°+52.5°

        ∠OBD=67.5°

Also,∠OBD=∠OCD [OB=OC,radius]

In ΔOBC,

∠OBC+∠OCB+∠BOC=180°[By angle sum property]

67.5°+67.5°+∠BOC=180°

135°+∠BOC=180°

∠BOC=180°-135°

∠BOC =45°

Answered by guptasingh4564
18

The value of \angle BOC,\angle OBD\ and\ \angle BCD are 75\ degree,15\ degree\ and\ \angle 105\ degree

Step-by-step explanation:

Given,

O is the center of the circle, \angle BAD=75\ degree and cordBC=cordCD

From figure,

(i): \angle BOD=2\angle BAD

\angle BOD=2\times 75=150\ degree

∵ cordBC=cordCD

\angle BOC=\angle COD

\angle BOD=2\angle BOC

\angle BOC=\frac{1}{2}\times \angle BOD

\angle BOC=\frac{1}{2}\times 150

\angle BOC=\frac{150}{2}

\angle BOC=75\ degree

(ii): \angle OBD =\frac{1}{2} (180-\angle BOD)

\angle OBD =\frac{1}{2} (180-150)

\angle OBD =\frac{1}{2} \times 30

\angle OBD=15\ degree

(iii): \angle BCD = 180-\angle BAD

\angle BCD = 180-75

\angle BCD = 105\ degree

So, The value of \angle BOC,\angle OBD\ and\ \angle BCD are 75\ degree,15\ degree\ and\ \angle 105\ degree

Similar questions