) In the given figure, O is the centre of the circle,
angle BAD = 75° and chord BC = chord CD.
Find (i) angle BOC (ii) angle OBD, (iii) angle BCD.
Answers
i)∠BOC =45°,ii)∠OBD=67.5°,iii)∠BCD=75°
Step-by-step explanation:
Given,∠BAD=75°,BC=CD
Construction:Join BD and OC.
∠BOD=2∠BAD [∵Angle subtended at centre is double the angle subtended on circumference]
∠BOD=2×75°
∠BOD=150°
Similarly,∠BOD=2∠BCD
∠BCD=1/2∠BOD
=1/2×150°
∠BCD=75°...............(1)
Now,In ΔBOD,
OB=OD[Radius of circle ]
⇒∠OBD=∠ODB...........(2) [Angle opposite to equal side are always equal]
Now,In ΔOBD,
∠OBD+∠ODB+∠BOD=180° {By angle sum property of triangle]
∠ODB+∠ODB+150°=180° [From equation(2)]
2∠ODB=180°-150°
2∠ODB=30°
∠ODB=30°/2
∠ODB=15°=∠OBD
Now,it is given that,BC=CD
⇒∠CBD=∠CDB [Angle opposite to equal side are always equal]
Also,In ΔBCD,
∠BCD+∠CDB+∠CBD=180°[By angle sum property of triangle]
∠BCD+∠CDB+∠CDB=180°
75°+2∠CDB=180°
2∠CDB=180°-75°
∠CDB=°
52.5°
∠CDB=∠CBD=52.5°
Now,∠OBD=∠OBD+∠CBD
=15°+52.5°
∠OBD=67.5°
Also,∠OBD=∠OCD [OB=OC,radius]
In ΔOBC,
∠OBC+∠OCB+∠BOC=180°[By angle sum property]
67.5°+67.5°+∠BOC=180°
135°+∠BOC=180°
∠BOC=180°-135°
∠BOC =45°
The value of are
Step-by-step explanation:
Given,
is the center of the circle, and cordcord
From figure,
(i):
⇒
∵ cordcord
∴
∴
⇒
⇒
⇒
⇒
(ii):
⇒
⇒
∴
(iii):
⇒
⇒
So, The value of are