Math, asked by pokhrelganesh100, 18 days ago

। In the given figure, O is the centre of the circle. If LMPN = 6x° and ZPMN = 3x°, find the size of ZPQN. (Ans: 30°) ​

Attachments:

Answers

Answered by llAssassinHunterll
0

Answer:

In the given figure of the question, Q is the centre of the circle, and PM and PN are tangents from an external common point 'P'.

∠MPN=40

o

, to find ∠MQN

In □PMQN, ∠PMQ=∠PNQ=90

o

(Radius is ⊥ to tangent at point of contact from the centre)

∴∠PMQ+∠PNQ+∠MPN+∠MQN=360

o

(Sum of measures of interior angles of quadrilateral)

∴90

o

+90

o

+40

o

+∠MQN=360

o

∠MQN=360

o

−(90

o

+90

o

+40

o

)

=360

o

−220

o

=140

o

Answered by aliashrestha
5

Step-by-step explanation:

6x+3x+90=180(angle made by diameter)

9x+90=180

x=10

3x=3*10=30

3x=pqn(angle made by two circumference angles sharing the same arc)

pqn=30

Similar questions