In the given figure, O is the centre of the circle of radius 5cm. OM perpendicula to AB, ON perpendicular to CD and AB parallel to CD ,if AB=6cm , CD =8cm, find the length of MN
Answers
Answer:
radius is 5 cm
AB=6cm
CD=8cm
MN=10
Given :-
In the given figure, O is the centre of the circle of radius 5cm. OM perpendicular to AB, ON perpendicular to CD and AB parallel to CD ,if AB=6cm , CD =8cm
To Find :-
Length of MN
Solution :-
Join A to O and C to O
Now, We will have two right triangles ΔAOM & ΔCON
In ΔAOM we have
AM = AB/2
⇒ AM = 6/2
⇒ AM = 3 cm
⇒ OA = 5 cm [Radius is 5 cm]
By using Pythagoras theorem
⇒ (OA)² = (AM)² + (MO)²
⇒ (5)² = (3)² + (MO)²
⇒ 25 = 9 + (MO)²
⇒ 25 - 9 = (MO)²
⇒ 16 = (MO)²
⇒ √16 = MO
⇒ 4 = MO
Now,
In ΔCON we have
CN = CD/2
⇒ CN = 8/2
⇒ CN = 4 cm
⇒ CO = 5 cm [Radius is 5 cm]
By using pythagoras theorem
⇒ (CO)² = (CN)² + (NO)²
⇒ (5)² = (4)² + (NO)²
⇒ 25 = 16 + (NO)²
⇒ 25 - 16 = (NO)²
⇒ 9 = (NO)²
⇒ √(9) = NO
⇒ 3 = NO
Now,
Length of MN = MO + NO
⇒ MN = 4 + 3
⇒ MN = 7 cm
∴ Length of MN is 7 cm