In the given figure, ∆ODC ~ ∆OBA, ∠ BOC = 125° and ∠ CDO = 70 find, (i)∠DOC, (ii) ∠ DCO, (iii) ∠ OAB.
Plz give me answer ( for math experts)
Answers
Given
- ∆ODC ~ ∆OBA
- ∠ BOC = 125° and ∠ CDO = 70
To find out:
(i)∠DOC
(ii) ∠ DCO
(iii) ∠ OAB.
Solution:
Since, BD is a line and OC is a ray on it ,
( i ) ∠DOC + ∠BOC = 180°
∠DOC + 125° = 180°
∠DOC = 180° - 125°
∠DOC = 55°
( ii ) In ∆ CDO ,We have
∠CDO + ∠DOC + ∠DCO = 180°
⇒ 70° + 55° + ∠DCO = 180°
⇒ 125° + ∠DCO = 180°
⇒ ∠DCO = 180° - 125°
⇒ ∠DCO = 55°
( iii ) It is given that ∆ODC ~ ∆OBA
Therefore,
∠ODC = ∠OBA , ∠OCD = ∠OAB
∠OBA = 70° and ∠OAB = 55°
• ∆ODC~∆OBA
• ∆BOC = 125° And ∆CDO = 70°
(1) ∆DOC
(2) ∆DCO
(3) ∆OAB
• BD is line and OC is a ray0n it.
(1) ∆DOC + ∆BOC = 180°
∆DOC + 125° = 180°
∆DOC = 180° - 125°
∆DOC = 55°
• ∆CDO
∆CDO + ∆DOC + ∆DCO = 180°
70° + 55° + ∆DOC = 180°
125° + ∆DCO = 180°
∆DCO = 180° - 125°
∆DCO = 55°
(3) ∆ODC~∆OBA
∆ODC = ∆OBA
∆OCD = ∆OAB
∆OBA = 70° and ∆OAB = 55°