Math, asked by rohitchavan4, 11 months ago

In the given figure, OEB = 75°, OBE = 55° and OCD = 100%. Then ODC=?​

Answers

Answered by RvChaudharY50
1

Given :- In the given figure, ∠OAB is equal to 75°, ∠OBA is equal to 55° and ∠OCD is equal to 100°. Then ∠ODC is equal to ?

Solution :-

In ∆OAB, we have,

→ ∠OAB + ∠OBA + ∠AOB = 180° (By Angle sum Property.) → 75° + 55°+ ∠AOB = 180°

→ 130° + ∠AOB = 180°

→ ∠AOB = 180° - 130°

→ ∠AOB = 50°

now, as we can see that,

→ ∠COD = ∠AOB = 50° (vertically opposite Angles.)

In ∆OCD, we have,

→ ∠COD + ∠OCD + ∠ODC = 180° (By Angle sum Property.)

→ 50° + 100° + ∠ODC = 180°

→ 150° + ∠ODC = 180°

→ ∠ODC = 180° - 150°

→ ∠ODC = 30° (Ans.)

Learn more :-

In ABC, AD is angle bisector,

angle BAC = 111 and AB+BD=AC find the value of angle ACB=?

https://brainly.in/question/16655884

Attachments:
Similar questions