Math, asked by dhanya2sindhu, 5 months ago

In the given figure ∠OPQ =30 degrees and ∠ORQ = 57 degrees Then, the measure of ∠POR is

Attachments:

Answers

Answered by Blossomfairy
8

Given :

  • ∠OPQ = 30°
  • ∠ORQ = 57°

To find :

  • Measure of ∠POR

According to the question,

∠OQP = ∠ORQ

∠ORQ = 57°

Reason : Radius are equal. So, the angles are also equal.

In △QOR :

∠ORQ + ∠OQR + ∠QOR = 180°

Reason : Sum of all angles of a triangle is 180°

57° + 57° + ∠QOR = 180°

114° + ∠QOR = 180°

∠QOR = 180° - 114°

∠QOR = 66°

  • So,the measure of QOR = 66°.

Now,

∠OPQ = ∠OQP

∠OQP = 30°

Reason : Radius are equal. So, the angles are also equal.

In △POQ

∠OPQ + ∠OQP + ∠POQ = 180°

Reason : Sum of all angles of a triangle is 180°

30° + 30° + ∠POQ = 180°

60° + ∠POQ = 180°

∠POQ = 180° - 60°

∠POQ = 120°

So,

∠POR = ∠POQ - ∠QOR

∠ POR = 120° - 66°

∠POR = 54°

  • So, option C) 54° is correct.
Answered by DARLO20
7

\Large\bf{\color{indigo}GiVeN,} \\

• In the attached picture,

  • \bf{\angle{OPQ}\:=\:30°}

  • \bf{\angle{ORQ}\:=\:57°}

OP, OQ & OR are the radius of the circle, i.e.

  • OP = OQ = OR

\Large\bf{In\:\triangle{POQ},} \\

\red\checkmark\:\:\bf{OP\:=\:OQ} \\

\bf\pink{We\:know\:that,} \\

  • Opposite angles of two equal sides is equal.

:\implies\:\:\bf{\angle{OPQ}\:=\:\angle{OQP}\:=\:30°} \\

\Large\bf{In\:\triangle{OQR},} \\

\red\checkmark\:\:\bf{OQ\:=\:OR} \\

\bf\pink{We\:know\:that,} \\

  • Opposite angles of two equal sides is equal.

:\implies\:\:\bf{\angle{OQR}\:=\:\angle{ORQ}\:=\:57°} \\

\Large\bf{In\:\triangle{OQR},} \\

\longmapsto\:\:\bf{\angle{OQR}\:+\:\angle{ORQ}\:+\:\angle{ROQ}\:=\:180°\:} \\

\longmapsto\:\:\bf{57°\:+\:57°\:+\:\angle{ROQ}\:=\:180°\:} \\

\longmapsto\:\:\bf{\angle{ROQ}\:=\:180°\:-\:114°\:} \\

\longmapsto\:\:\bf{\angle{ROQ}\:=\:66°\:} \\

\Large\bf{In\:\triangle{OQS},} \\

\longmapsto\:\:\bf{\angle{OQS}\:+\:\angle{OSQ}\:+\:\angle{SOQ}\:=\:180°\:} \\

\longmapsto\:\:\bf{30°\:+\:\angle{OSQ}\:+\:66°\:=\:180°\:} \\

\longmapsto\:\:\bf{\angle{OSQ}\:=\:180°\:-\:96°\:} \\

\longmapsto\:\:\bf{\angle{OSQ}\:=\:84°\:} \\

\bf\pink{We\:know\:that,} \\

  • The exterior angle of a triangle is equal to the sum of the two interior opposite angles.

\longmapsto\:\:\bf{\angle{OSQ}\:=\:\angle{OPS}\:+\:\angle{POS}\:} \\

\longmapsto\:\:\bf{84°\:=\:30°\:+\:\angle{POS}\:} \\

\longmapsto\:\:\bf{\angle{POR}\:=\:84°\:-\:30°\:} \\

\longmapsto\:\:\bf\green{\angle{POR}\:=\:54°\:} \\

\orange\bigstar\:\:{\boxed{\boxed{\blue{\bf{Correct\:Option\:\longrightarrow\:(c)\:54°\:}}}}} \\

Attachments:
Similar questions