In the given figure, ΔOQP = ΔOAB, angle OPQ = 52° and angle BOQ = 104°. Find angle OAB
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
PQ is parallel to AB
So, Angle OPQ = Angle OBA (because, alternate interior angles)
Angle OBA = 52 Degrees
Angle QOB = Angle POA = 104 Degrees ( Vertically Opposite Angles) - (1)
Angle POQ = Angle AOB ( Vertically Opposite Angles) - (2)
Angle(QOB + POA + POQ + AOB) = 360 Degrees
Angle(2QOB + 2AOB) = 360 Degrees [ from (1) and (2)]
208 + 2 AOB = 360
2 AOB = 360 - 208 = 152
AOB = 152/2 = 76 Degrees
Therefore, Angle AOB + Angle OBA + Angle OAB = 180 Degrees
76 + 52 + OAB = 180
128 + AOB = 180
AOB = 180 - 128 = 52
Angle AOB = 52 Degrees
Answered by
1
∠QOP + ∠BOQ = 180° (Linear pair)
∠QOP + 104° = 180°
∠QOP = 180° – 104° = 76⁰
∠OPQ + ∠QOP + ∠PQO = 180° (Angles of a triangle) 52° + 76° + ∠PQO = 180⁰
128° + ∠PQO = 180⁰
∠PQO = 180⁰ - 128⁰ = 52°
∠OAB = ∠PQO = 52° (vertically opposite angles)
Similar questions