Math, asked by NinjaTom, 5 months ago

In the given figure, PA, QB and RC are each perpendicular to AC. If AP=12cm, RC=4cm then find QB.​

Attachments:

Answers

Answered by lAnniel
10

\huge\rm\underline\purple{Question :-}

In the given figure, PA, QB and RC are each perpendicular to AC. If AP=12cm, RC=4cm then find QB.

\huge\rm\underline\orange{Answer :-}

Let ∠ RAC = α

and ∠ PCA = β

\red{\underline\bold{To\: find,}}

  • Height, QB = ❓

\blue{\underline\bold{We\: know\:,}}

\boxed{ \sf \purple{ tan\;θ\: =\frac{perpendicular}{base} }}

\green{\underline\bold{From\: the\:given\:figure,}}

tan α =  \frac{h}{a}

 \frac{h}{a}=  \frac{4}{a+b}

h =  \frac{4a}{a+b}

\blue{\underline\bold{And,}}

tan β =  \frac{h}{b}

 \frac{h}{b}=  \frac{12}{a+b}

h =  \frac{12b}{a+b}

\orange{\underline\bold{From\:these,}}

h =  \frac{4a}{a+b} =  \frac{12b}{a+b}

\pink{\underline\bold{Now, \:Dividing \:both\: sides \:by\: 'b'}}

\green{\underline\bold{We\:get,}}

h =  \frac{4×a/b}{1+a/b} =  \frac{12}{a/b+1}

Let  \frac{a}{b} = x,

h =  \frac{4x}{x+1} =  \frac{12}{1+x}

=  \frac{4x-12}{x+1} = 0

x = 3

So, h =  \frac{12}{x+1}=  \frac{12}{4}= 3

\pink{\underline\bold{ ∴ \:The\:required\:answer\:,QB=\:3\: cm}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
1

Answer:

QB is equal to 3 cm..............

Similar questions