Math, asked by shivba5, 1 year ago

In the given figure Point o is the center of the circle Show that angle AOC = angle AFC +angle AEC

Attachments:

Answers

Answered by berno
381

Given: In the given figure O is the centre of the circle.

To Prove: \angle AOC=\angle AFC+\angle AEC

Proof: In ΔBEC using exterior angle theorem.

Exterior angle theorem property: Sum of two interior angle of triangle is equal to opposite exterior angle. So, we get

\angle ABC=\angle AEC+\angle BCD    

Double the above equation both sides

2\angle ABC=2\angle AEC+2\angle BCD

Angle subtended on circle is half angle subtended at centre.  

2\angle ABC=\angle AOC  

\angle AOC=\angle AEC+\angle BCD+\angle AEC+\angle BCD

\angle AOC=\angle AEC+\angle BCD+\angle ABC

\text{But } \angle ABC=\angle ADC  (∴ Angles subtended on same arc are equal)

\angle AOC=\angle AEC+\angle BCD+\angle ADC

In ΔFDC using exterior angle theorem.

\angle AFC=\angle BCD+\angle ADC

\therefore \angle AOC=\angle AEC+\angle AFC

\text{Hence proved, } \angle AOC=\angle AFC+\angle AEC



anuja102004: thanksss
chandrabhansinawane0: Thnx
nachiket3: thx
saif552: heartly thanks
Answered by NeilStringer52
53
Given: In the given figure O is the centre of the circle.
To Prove: \angle AOC=\angle AFC+\angle AEC∠AOC=∠AFC+∠AEC
Proof: In ΔBEC using exterior angle theorem.
Exterior angle theorem property: Sum of two interior angle of triangle is equal to opposite exterior angle. So, we get
\angle ABC=\angle AEC+\angle BCD∠ABC=∠AEC+∠BCD    
Double the above equation both sides
2\angle ABC=2\angle AEC+2\angle BCD2∠ABC=2∠AEC+2∠BCD
Angle subtended on circle is half angle subtended at centre.  
2\angle ABC=\angle AOC2∠ABC=∠AOC  
\angle AOC=\angle AEC+\angle BCD+\angle AEC+\angle BCD∠AOC=∠AEC+∠BCD+∠AEC+∠BCD
\angle AOC=\angle AEC+\angle BCD+\angle ABC∠AOC=∠AEC+∠BCD+∠ABC
\text{But } \angle ABC=\angle ADCBut ∠ABC=∠ADC  (∴ Angles subtended on same arc are equal)
\angle AOC=\angle AEC+\angle BCD+\angle ADC∠AOC=∠AEC+∠BCD+∠ADC
In ΔFDC using exterior angle theorem.
\angle AFC=\angle BCD+\angle ADC∠AFC=∠BCD+∠ADC
\therefore \angle AOC=\angle AEC+\angle AFC∴∠AOC=∠AEC+∠AFC
\text{Hence proved, } \angle AOC=\angle AFC+\angle AECHence proved, ∠AOC=∠AFC+∠AEC


omdarkunde: no logical answer
Similar questions