In the given figure Point o is the center of the circle Show that angle AOC = angle AFC +angle AEC
Attachments:
Answers
Answered by
381
Given: In the given figure O is the centre of the circle.
To Prove:
Proof: In ΔBEC using exterior angle theorem.
Exterior angle theorem property: Sum of two interior angle of triangle is equal to opposite exterior angle. So, we get
Double the above equation both sides
Angle subtended on circle is half angle subtended at centre.
(∴ Angles subtended on same arc are equal)
In ΔFDC using exterior angle theorem.
anuja102004:
thanksss
Answered by
53
Given: In the given figure O is the centre of the circle.
To Prove: \angle AOC=\angle AFC+\angle AEC∠AOC=∠AFC+∠AEC
Proof: In ΔBEC using exterior angle theorem.
Exterior angle theorem property: Sum of two interior angle of triangle is equal to opposite exterior angle. So, we get
\angle ABC=\angle AEC+\angle BCD∠ABC=∠AEC+∠BCD
Double the above equation both sides
2\angle ABC=2\angle AEC+2\angle BCD2∠ABC=2∠AEC+2∠BCD
Angle subtended on circle is half angle subtended at centre.
2\angle ABC=\angle AOC2∠ABC=∠AOC
\angle AOC=\angle AEC+\angle BCD+\angle AEC+\angle BCD∠AOC=∠AEC+∠BCD+∠AEC+∠BCD
\angle AOC=\angle AEC+\angle BCD+\angle ABC∠AOC=∠AEC+∠BCD+∠ABC
\text{But } \angle ABC=\angle ADCBut ∠ABC=∠ADC (∴ Angles subtended on same arc are equal)
\angle AOC=\angle AEC+\angle BCD+\angle ADC∠AOC=∠AEC+∠BCD+∠ADC
In ΔFDC using exterior angle theorem.
\angle AFC=\angle BCD+\angle ADC∠AFC=∠BCD+∠ADC
\therefore \angle AOC=\angle AEC+\angle AFC∴∠AOC=∠AEC+∠AFC
\text{Hence proved, } \angle AOC=\angle AFC+\angle AECHence proved, ∠AOC=∠AFC+∠AEC
To Prove: \angle AOC=\angle AFC+\angle AEC∠AOC=∠AFC+∠AEC
Proof: In ΔBEC using exterior angle theorem.
Exterior angle theorem property: Sum of two interior angle of triangle is equal to opposite exterior angle. So, we get
\angle ABC=\angle AEC+\angle BCD∠ABC=∠AEC+∠BCD
Double the above equation both sides
2\angle ABC=2\angle AEC+2\angle BCD2∠ABC=2∠AEC+2∠BCD
Angle subtended on circle is half angle subtended at centre.
2\angle ABC=\angle AOC2∠ABC=∠AOC
\angle AOC=\angle AEC+\angle BCD+\angle AEC+\angle BCD∠AOC=∠AEC+∠BCD+∠AEC+∠BCD
\angle AOC=\angle AEC+\angle BCD+\angle ABC∠AOC=∠AEC+∠BCD+∠ABC
\text{But } \angle ABC=\angle ADCBut ∠ABC=∠ADC (∴ Angles subtended on same arc are equal)
\angle AOC=\angle AEC+\angle BCD+\angle ADC∠AOC=∠AEC+∠BCD+∠ADC
In ΔFDC using exterior angle theorem.
\angle AFC=\angle BCD+\angle ADC∠AFC=∠BCD+∠ADC
\therefore \angle AOC=\angle AEC+\angle AFC∴∠AOC=∠AEC+∠AFC
\text{Hence proved, } \angle AOC=\angle AFC+\angle AECHence proved, ∠AOC=∠AFC+∠AEC
Similar questions