Math, asked by AmazingAmir7753, 1 year ago

In the given figure PQ is a line. Ray OR perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ROS =1/2(∠QOS-∠POS)

Attachments:

Answers

Answered by arc555
49
Here is the answer of your que.
Attachments:
Answered by Anonymous
26

<b>☺ Hello mate__ ❤

◾◾here is your answer...

Given:   OR is perpendicular to PQ

OR and OS are rays to PQ

To prove:    ∠ROS=1/2(∠QOS−∠POS)

Proof:  ∠ROQ+∠ROP=180°       (Linear pair)

⇒∠ROP=180°−∠ROQ=180°−90°=90°

R.H.S =1/2(∠QOS−∠POS)

=1/2(180°−∠POS−∠POS)                               (∠POS+∠QOS=180°)   (Linear pair)

=1/2(180°−2∠POS)          ...........eq  (1)

We have ∠POS=∠ROP−∠ROS=90°−∠ROS, putting this in eq(1), we get

R.H.S =1/2(180°−2(90°−∠ROS))

=1/2(180°−180°+2∠ROS)=1/2(2∠ROS)

=∠ROS

Therefore, L.H.S=R.H.S

Hence proved.

I hope, this will help you.

Thank you______❤

✿┅═══❁✿ Be Brainly✿❁═══┅✿

Similar questions