Math, asked by sarwansunita66, 9 months ago

in the given figure , PQ is tangent to outer circle and PR is tangent to inner circle . if PQ =4cm , OQ=3cm , and QR = 2 cm them find the length of PR

Attachments:

Answers

Answered by soumya142004
10

Answer:

In ∆OQP

<OQP = 90°

and PQ = 4cm, OQ = 3cm

so, OP = √(4²+3²) = √(16+9) = √25 = 5cm

now, in ∆POR

< PRO = 90°

PO = 5cm , OR = 2cm

so, PR = √(5²-2²)

= √(25-4)

=√21cm

Thank you please mark my answer as brainliest

Answered by Anonymous
75

Given:

  • PQ is tangent to outer circle and PR is tangent to inner circle.
  • PQ = 4cm
  • OQ = 3cm
  • OR = 2cm

Find:

  • Length of PR

Solution:

In \triangle OPQ

 \rm  \boxed{\rm{H^2 = P^2 + B^2}} \qquad \qquad  \big\lgroup{Pythogoras \: Theorem} \big\rgroup \\  \\  \\

 \rm \dashrightarrow {OP}^2 = {OQ}^2 + {PQ}^2  \\  \\  \\

where,

  • OQ = 3cm
  • PQ = 4cm

So,

 \rm \dashrightarrow {OP}^2 = {OQ}^2 + {PQ}^2  \\  \\  \\

 \rm \dashrightarrow {OP}^2 = {3}^2 + {4}^2  \\  \\  \\

 \rm \dashrightarrow {OP}^2 =9+ 16  \\  \\  \\

 \rm \dashrightarrow {OP}^2 =25  \\  \\  \\

 \rm \dashrightarrow OP = \sqrt{25}  \\  \\  \\

 \rm \dashrightarrow OP = 5cm \\  \\  \\

_________________________

Now, Since PR is tangent to inner circle and OR is its radius then

\angle ORP = 90°

[ \because The tangent is perpendicular to the radius of the Circle at the point of Contact]

Now, In \triangle ORP

 \rm  \boxed{\rm{H^2 = P^2 + B^2}} \qquad \qquad  \big\lgroup{Pythogoras \: Theorem} \big\rgroup \\  \\  \\

 \rm \dashrightarrow {OP}^2 = {OR}^2 + {PR}^2  \\  \\  \\

where,

  • OP = 5cm
  • OR = 2cm

So,

 \rm \dashrightarrow {5}^2 = {2}^2 + {PR}^2  \\  \\  \\

 \rm \dashrightarrow 25 = 4+ {PR}^2  \\  \\  \\

 \rm \dashrightarrow 25  -  4 =  {PR}^2  \\  \\  \\

 \rm \dashrightarrow 21=  {PR}^2  \\  \\  \\

 \rm \dashrightarrow  \sqrt{21} cm=  PR\\  \\  \\

 \rm \dashrightarrow  PR =  \sqrt{21} cm\\  \\  \\

 \footnotesize{ \rm \therefore PR =  \sqrt{21} cm}\\  \\  \\

Hence, PR = √(21) cm

Similar questions