In the given figure, PQ=QR.LOR=
48 LSR P218° then L P Q R
R
Answers
Answered by
1
Answer:
In given figure , PQ=RS and ∠ORS=48
0
.
In given figure O is the center of circle and point P,Q,R and S on the circumference of circle
Then line OP, OQ ,OR and OS are the radius of circle
So OP=OQ=OR=OS
In ΔOPQ and ΔORS
PQ=RS (Given )
OP=OR (Radius of circle)
OQ=OS (Radius of circle)
∴ΔPOQ≅ΔORS
∠ORS=∠OPQ=48
0
Given ∠ORS=48
0
OR=OS (radius)
∴∠OSR=∠ORS=48
0
Given\angle ORS=48^{0}$$
In ΔORS
∠ROS+∠ORS+∠OSR=180
0
⇒∠ROS+48+48=180
⇒∠ROS=180−48−48=84
0
∠OPQ=48
0
,∠ROS=84
0
Similar questions