In the given figure ,pq=QR = RS and =40 ° find
(1) pOR
(2) POS
(3) oPR
Answers
Answered by
1
Step-by-step explanation:
We have PQ = QR hence ∠QPR = ∠QRP
Also ∠PQR + ∠QPR + ∠QRP = ∠180º (sum of interior angles of a triangle).
∠PQR = 128º
∠QPR = ∠QRP = 180 - 128 / 2 = 26º
We can say that ∠QSR and ∠QPR are angles in the same segment, then:
∠QSR = ∠QPR = 26º
Now in triangle QRS, since QR = RS hence ∠QRS = ∠SQR = 26º
Also ∠QRS = 180º - 26 - 26º = 128º
Then ∠ROS = 2∠SQR = 2 x 26º = 52º
Also we can say that ∠QRS + ∠QTS = 180º, then ∠QTS = 180º - 128º = 52º
From the figure we also know that: ∠PQS + ∠SQR = ∠PQR
Then:
∠PQS = 128º - 26º = 102º
Now in cycic quadrilateral PQST, ∠PQS + ∠PTS = 180º
Then:
∠PTS = 180º - 102º = 78º
Now we can say that
∠PTQ + ∠QTS = ∠PTS
∠PTQ = 78º - 52º = 26º
Hence the angles measurement is 26º
Answered by
0
hope you like the answer
Attachments:
Similar questions