Math, asked by ravipativarshith, 11 months ago

In the given figure, PQR is a triangle and S is a point on QR such that the line PS divides QR in the ratio 2 : 1. The bisectors of angles PSQ and PSR meet PQ and PR at T and U respectively. If PU = 128 cm, UR = 16 cm, and PQ = 100 cm, then PT is



Answers

Answered by MaheswariS
2

\textbf{Angle bisector theorem:}

\text{When vertical angle of a triangle is bisected,}

\text{the bisector divides the base into two segments}

\text{which have the ratio as the order of other two sides}

\textbf{Given:}

\text{PU=128 cm, UR=16 cm, PQ=100 cm}

\textbf{To find: PT}

\textbf{Solution:}

\text{The point S divides QR in the ratio 2:1}

\text{Then,}\;QS=\frac{2}{3}QR\;\text{and}\;SR=\frac{1}{3}QR

\textbf{ST is the angle bisector of $\angle{PSQ}$}

\text{By Angle bisector theorem, we get}

\dfrac{PT}{QT}=\dfrac{PS}{QS}

\dfrac{x}{100-x}=\dfrac{PS}{\frac{2}{3}QR}

\dfrac{2x}{300-3x}=\dfrac{PS}{QR}.........(1)

\textbf{SU is the angle bisector of $\angle{PSR}$}

\text{By Angle bisector theorem, we get}

\dfrac{UR}{UP}=\dfrac{SR}{PS}

\dfrac{16}{128}=\dfrac{\frac{1}{3}QR}{PS}

\dfrac{1}{8}=\dfrac{\frac{1}{3}QR}{PS}

\dfrac{3}{8}=\dfrac{QR}{PS}

\dfrac{8}{3}=\dfrac{PS}{QR}...(2)

\text{From (1) and (2), we get}

\dfrac{2x}{300-3x}=\dfrac{8}{3}

\dfrac{x}{300-3x}=\dfrac{4}{3}

\implies\,3x=1200-12x

\implies\,15\,x=1200

\implies\,x=\dfrac{1200}{15}

\implies\,x=80\;\text{cm}

\therefore\textbf{PT is 80 cm}

Find more:

AD=15 and DC=20. If BD is the bisector of angle ABC, what is the perimeter of the triangle ABC?

https://brainly.in/question/13161656

Similar questions