Math, asked by erica0026, 4 months ago

In the given figure, PQRS is a trapezium with PQ || RS, PS 1 SR and ZQRS = 30°. If QATR
is a sector of a circle with centre R and PQ = QR = 21cm, ST = 4 cm and PS= 10.5cm, find
the area of the shaded region. (Use t =
Р
22
and V3 = 1.732)
7
A
300
S
R

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\bf{Solution-}}

Given :-

Dimensions of trapezium :-

PQRS is a trapezium such that

  • PQ = 21 cm

  • RS = ST + TR = 4 + 21 = 25 cm

  • PS = 10.5 cm

So, it implies,

  • Parallel sides of a trapezium are 21 cm and 25 cm

and

  • Distance between parallel sides = 10.5 cm

So,

We know,

  • Area of trapezium is given by

 \boxed{ \sf \: Area_{(trapezium)} = \dfrac{1}{2}(sum \: of \parallel \: sides) \times distance}

  • On substituting all these values, we get

\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2} \times (21 + 25) \times 10.5

\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2}  \times 46 \times 10.5

\bf :\longmapsto\:Area_{(trapezium)} = 241.5 \:  {cm}^{2}  -  - (1)

Now,

Dimensions of sector :-

  • Radius of sector, QR = r = 21 cm

  • Sector angle, θ = 30°

So,

  • Area of sector is given by

 \boxed{ \sf \: Area_{(sector)} = \pi \:  {r}^{2}  \dfrac{\theta \:}{360 \degree}}

  • On substituting all these values, we get

\rm :\longmapsto\:Area_{(sector)} = \dfrac{22}{7}  \times 21 \times 21 \times \dfrac{30}{360}

\bf :\implies\:Area_{(sector)} = 115.5 \:  {cm}^{2}

Therefore,

\rm :\longmapsto\:Area_{(shaded \: region)} = Area_{(trapezium)} - Area_{(sector)}

\rm :\longmapsto\:Area_{(shaded \: region)} = 241.5 - 115.5

\bf :\longmapsto\:Area_{(shaded \: region)} = 126 \:  {cm}^{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

\boxed{ \sf \: Area_{(minor \: segment)} = \bigg[\pi \: {r}^{2} \dfrac{\theta}{360\degree} - \dfrac{1}{2} {r}^{2}sin\theta\bigg]}

\boxed{ \sf \: Area_{(major \: sector)} = \pi \: {r}^{2} \dfrac{(360\degree - \theta)}{360\degree}}

\boxed{ \sf \: Perimeter_{(sector)} = 2r + l}

\boxed{ \sf \: Length \: of \: arc_{(sector)} = 2\pi \: r \: \dfrac{\theta}{360\degree}}

Similar questions