Math, asked by anisha57, 1 year ago

in the given figure PR greater than PQ and PS bisects angle QPR. prove that PSR greater than PSQ

Attachments:

Answers

Answered by ShuchiRecites
29
\textbf{ Hello Mate! }

\textbf{ Given } = PR > PQ and <QPS = <SPR

\textbf{ To Prove } = Angle PSR > PSQ

Please refer to image I posted.

Have great future ahead!
Attachments:
Answered by Anonymous
5

Hello mate =_=

____________________________

Solution:

PR>PQ              (Given)

⇒∠PQR>∠PRQ             ....... (1)

(In any triangle, the angle opposite to the longer side is larger.)

We also have ∠PQR+∠QPS+∠PSQ=180°      (Angle sum property of triangle)     

⇒∠PQR=180°−∠QPS−∠PSQ             ......(2)

And, ∠PRQ+∠RPS+∠PSR=180°               (Angle sum property of triangle)          

⇒∠PRQ=180°−∠PSR−∠RPS            ....... (3)

 Putting (2) and (3) in (1), we get

180°−∠QPS−∠PSQ>180°−∠PSR−∠RPS             

We also have ∠QPS=∠RPS, using this in the above equation, we get

−∠PSQ>−∠PSR

⇒∠PSQ<∠PSR

Hence Proved

hope, this will help you.

Thank you______❤

_____________________________❤

Attachments:
Similar questions