Math, asked by hiteshkumar96, 4 months ago

In the given figure, sides QP and RQ of ΔPQR are produced to points S and T respectively. If ∠SPR = 135º and ∠PQT = 110º, find ∠PRQ.



Attachments:

Answers

Answered by Anonymous
49

Answer:

  • ∠PRQ = 65°

Step-by-step explanation:

Given:-

  • ∠SPR = 135°
  • ∠PQT = 110°

To Prove:-

  • ∠PRQ

Solution:-

It is given that,

∠SPR = 135º and ∠PQT = 110º

According to the question:-

⇒ ∠SPR + ∠QPR = 180º (Linear pair angles)

⇒ 135º + ∠QPR = 180º

⇒ ∠QPR = 45º

Also, ∠PQT + ∠PQR = 180º (Linear pair angles)

⇒ 110º + ∠PQR = 180º

⇒ ∠PQR = 70º

As the sum of all interior angles of a triangle is 180º, therefore, for ΔPQR,

⇒ ∠QPR + ∠PQR + ∠PRQ = 180º

⇒ 45º + 70º + ∠PRQ = 180º

⇒ ∠PRQ = 180º − 115º

⇒ ∠PRQ = 65º

Hence,

  • ∠PRQ = 65º
Answered by Anonymous
16

Given

  • ∠SPR = 135°
  • ∠PQT = 110°

To find

  • ∠PRQ

Solution

  • As we can see in the given figure,

⠀⠀❍ ∠PQT and ∠PQR are forming linear ⠀⠀⠀⠀pair

⠀⠀

\tt\longmapsto{∠PQT + ∠PQR = 180°}

\tt\longmapsto{110° + ∠PQR = 180°}\: \: \: \: \: \: \: {\bf{\bigg\lgroup{Given}{\bigg\rgroup}}}

\tt\longmapsto{∠PQR = 180° - 110°}

\tt\longmapsto{∠PQR = 70°}⠀⠀...[1]

Similarly,

⠀⠀❍ ∠SPR and ∠QPR are forming linear ⠀⠀⠀⠀pair

\tt\longmapsto{∠SPR + ∠QPR = 180°}

\tt\longmapsto{135° + ∠QPR = 180°}\: \: \: \: \: \: \: {\bf{\bigg\lgroup{Given}{\bigg\rgroup}}}

\tt\longmapsto{∠QPR = 180° - 135°}

\tt\longmapsto{∠QPR = 45°}⠀⠀....[2]

We know that

\boxed{\tt{\bigstar{Sum\: of\: all\: angles\: in\: a\: triangle = 180°{\bigstar}}}}

\tt\longrightarrow{∠PQR + ∠QPR + ∠PRQ = 180°}

\tt\longrightarrow{70° + 45° + ∠PRQ = 180°}\: \: \: \: \: \: \: {\bf{\bigg\lgroup{From\: 1\: and\: 2}{\bigg\rgroup}}}

\tt\longrightarrow{115° + ∠PRQ = 180°}

\tt\longrightarrow{∠PRQ = 180° - 115°}

\bf\longrightarrow{\boxed{\red{∠PRQ = 65°}}}

⠀⠀❍ Hence

\large{\boxed{\boxed{\sf{∠PRQ = 65°}}}}

━━━━━━━━━━━━━━━━━━━━━━

Similar questions