Math, asked by Anonymous, 11 months ago

In the given figure ST ║ QR, PS = 2.4 cm, PT = 3.2 cm, TR = 4.8 cm, then find PQ.

Attachments:

Answers

Answered by sridevi15
8

Answer:

ST||QR

PS/SQ=PT/TR

2.4/SQ=3.2/4.8

sq=2.4×4.8/3.2=3.6cm

pq=PS+sq=2.4+3.6

pq=6cm

Answered by guptasingh4564
4

The value of PQ is 6\ cm

Step-by-step explanation:

Given,

In figure,

ST\parallel QR,PS=2.4\ cm,PT=3.2\ cm\ and\ TR=4.8\ cm

In \triangle PST and \triangle PQR,

  • \angle PST=\angle PQR (∵ ST\parallel QR)
  • \angle PTS=\angle PRQ (∵ ST\parallel QR)
  • \angle P common.

\triangle PST\triangle PQR

So,

\frac{PS}{SQ}=\frac{PT}{TR}

\frac{2.4}{SQ}=\frac{3.2}{4.8}

SQ=\frac{2.4\times 4.8}{3.2}

SQ=3.6\ cm

PQ=PS+SQ=2.4+3.6=6\ cm

So, The value of PQ is 6\ cm

Similar questions