In the given figure,SV is the median and SW perpendicular to TU.
Prove that ,
(SU)^2-(ST)^2=2TU×VW
Answers
Answered by
25
Answer:
SU² - ST² = 2 TU × VW
Step-by-step explanation:
SV is the median
=> TV = UV = TU/2
SW ⊥ TU
=> ST² = SW² + TW²
=> ST² = SW² + (TV - VW)²
=> ST² = SW² + (TU/2 - VW)² Eq1
Similarly
=> SU² = SW² + UW²
=> SU² = SW² + (TV + VW)²
=> SU² = SW² + (TU/2 + VW)² Eq1
Eq2 - Eq 1
=> SU² - ST² = (TU/2 + VW)² - (TU/2 - VW)²
using a² - b² = (a+b)(a-b)
=> SU² - ST² = (TU/2 + VW +TU/2 - VW )(TU/2 + VW - (TU/2 - VW))
=> SU² - ST² = (TU )(2VW)
=> SU² - ST² = 2 TU × VW
QED
Proved
Answered by
20
Answer:
SU^2-ST^2=2TU×VW
Step-by-step explanation:
so it's proved☺️☺️
Attachments:
Similar questions