Math, asked by shaikhserozfatima786, 4 months ago

In the given figure tan∅=​

Attachments:

Answers

Answered by Anonymous
22

\dag \: \underline{\sf AnsWer :} \\

Here we are given a right angle traingle with measure of three sides and given one angle ⊖. and we are asked to find the value of tan ⊖.

  • AB = 12 units
  • AC = 13 units
  • BC = 5 units

First we will find the value of sin ⊖ :

:\implies\sf  \sin( \theta)  = \dfrac{Opposite \:  side}{Hypotenuse} \\  \\

:\implies\sf  \sin( \theta)  = \dfrac{AB}{AC} \\  \\

:\implies \underline{ \boxed{\sf  \sin( \theta)  = \dfrac{12}{13}}} \\  \\

Also find the value of cos ⊖ :

\dashrightarrow\:\:\sf  \cos( \theta)  = \dfrac{Adjacent  \: side}{Hypotenuse}  \\  \\

\dashrightarrow\:\:\sf  \cos( \theta)  = \dfrac{BC}{AC}  \\  \\

\dashrightarrow\:\: \underline{ \boxed{\sf  \cos( \theta)  = \dfrac{5}{13} }} \\  \\

Now, we can find the value of tan ⊖ :

\longrightarrow\:\:\sf \tan(\theta) = \dfrac{\sin (\theta)}{\cos(\theta)} \\  \\

\longrightarrow\:\:\sf \tan(\theta) = \dfrac{ \dfrac{12}{13}}{ \dfrac{5}{13}} \\  \\

\longrightarrow\:\:\sf \tan(\theta) =  \dfrac{12}{13} \times \dfrac{13}{5} \\  \\

\longrightarrow\:\:\sf \tan(\theta) =  \dfrac{12}{13} \times \dfrac{13}{5} \\  \\

\longrightarrow\:\: \underline{ \boxed{\sf \tan(\theta) =  \dfrac{12}{5}}}\\  \\


Anonymous: Awesome !
Answered by jasprit155
1

12/5 is the right answer

Similar questions