Math, asked by mythilimorampudi63, 5 hours ago

In the given figure, the bisectors if angle ABC and angle BCA , intersect each other at point O. If angle BOC=100 , then find A need step by step explanation

Answers

Answered by preetijindal041
0

Answer:

20

Step-by-step explanation:

Bisectors of angle ABC and angle BCA , intersect each other at point O .

∠BOC = 100°

To find:

Measure of ∠A.

Solution:

Let the measure of ∠OBC be x and ∠OCB be y.

In triangle OBC, using angle sum property, we get

\angle OBC+\angle OCB+\angle BOC=180^{\circ}∠OBC+∠OCB+∠BOC=180

x+y+100^{\circ}=180^{\circ}x+y+100

=180

x+y=180^{\circ}-100^{\circ}x+y=180

−100

x+y=80^{\circ}x+y=80

...(i)

Bisectors of angle ABC and angle BCA , intersect each other at point O .

So, ∠ABC is 2x and ∠ACB be 2y.

In triangle ABC, using angle sum property, we get

\angle ABC+\angle ACB+\angle BAC=180∠ABC+∠ACB+∠BAC=180

2x+2y+\angle A=180^{\circ}2x+2y+∠A=180

2(x+y)+\angle A=180^{\circ}2(x+y)+∠A=180

2(80^{\circ})+\angle A=180^{\circ}2(80

)+∠A=180

[Using (i)]

160^{\circ}+\angle A=180^{\circ}160

+∠A=180

\angle A=180^{\circ}-160^{\circ}∠A=180

−160

\angle A=20^{\circ}∠A=20

Similar questions