Math, asked by ojaswi77, 1 year ago

In the given figure, the line segment XY is parallel to AC of triangle ABC and it divides the triangle into two parts of equal area. Prove that AX:AB =
2 -  \sqrt{2}  \ratio2
Solve the problem!! ​

Attachments:

Answers

Answered by itzdevilqueena
34

 \huge \bf \red{ \mid{ \overline{ \underline{solution}}} \mid}

Since XY ||AC, we have

 \angle \:  A  =  \angle \: BXY \: and \angle \: C =  \angle  \: BYX \:  \:  \:  \:  \:  \:  \: (corresponding \: angles)

 \therefore  \:  \triangle{ABC } \sim \triangle{XBY } \\  \implies \: \frac{ar( \triangle \: ABC )}{ ar( \triangle \: XBY )}  =  \frac{ {AB }^{2} }{ {XB }^{2} } ............(1)

But ar( \triangle \: ABC ) = 2 \times ar( \triangle \: XBY ) \:  \:  \:  \:  \: (given) \\   \implies \frac{ar( \triangle \: ABC )}{ ar( \triangle \: XBY )}  = 2 \: ...........(2)

From (1)&(2), we get

 \frac{ {AB }^{2} }{ {XB }^{2} }  = 2 \implies \:   ( { \frac{AB }{XB } )}^{2}  = 2 \\  \implies \:  \frac{AB }{XB }  =  \sqrt{2}  \implies \: AB =  \sqrt{2} (XB ) \\  \implies \: AB =  \sqrt{2}( AB - AX ) \\  \implies \:  \sqrt{2}AX = ( \sqrt{2}  - 1)AB \\  \implies \frac{AX }{AB }  =  \frac{( \sqrt{2} - 1) }{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  =  \frac{(2 -  \sqrt{2}) }{2}

Hence, AX:AB =(2 -  \sqrt{2} ) \ratio2

Similar questions