In the given figure, the tangent at a point C of a circle and a diameter AB when extended intersect at P.
If PCA = 130°, find CBA.
Attachments:
Answers
Answered by
2
Step-by-step explanation:


Join / Login
Question

The tangent at a point C of a circle and a diameter AB when extended intersect at P. If ∠PCA=1100 , find ∠CBA .Hint : Join C with centre O.

A,O,B,P all are on the same line and P and C are points on the tangent.
AB is a diameter of a circle.
∴ ∠BCA=90o [ Angle inscribe in a semi-circle. ]
C is the point on the circle where the tangent touches the circle.
⇒ So, ∠OCP=90o.
⇒ ∠PCA=∠PCO+∠OCA
⇒ 110o=90o+∠OCA
⇒ ∠OCA=20o
In △AOC,
⇒ AO=OC [ Radius of a circle. ]
⇒ ∠OCA=∠CAO=20o
In △ABC,
⇒ ∠CAB+∠CBA+∠BCA=180o
⇒ 20o+∠CBA+<
CBA=70°
Similar questions
Math,
9 days ago
Math,
9 days ago
English,
18 days ago
Computer Science,
9 months ago
Chemistry,
9 months ago