In the given figure , ∠ = ∠ , then prove that ∠ = ∠ (3)
P
S Q R T
Answers
Answer:
Sum of angles on a straight line=180 ∘
⟹∠PAE=180 ∘ −∠1
Similarly,∠PEA=180 ∘ −∠5
In△PAE
∠PAE+∠PEA+∠APE=180 ∘
⟹180−∠1+180−∠5+∠APE=180 ∘
⟹∠APE=∠1+∠5−180 ∘ =∠P
Similarly,∠BSC=∠2+∠3−180 ∘ =∠S
∠DRC=∠3+∠4−180 ∘ =∠R
∠DQE=∠4+∠∠5−180 ∘ =∠Q
∠ATS=∠1+∠2−180 ∘ =∠T
⟹∠P+∠Q+∠R+∠S+∠T
=∠1+∠2+∠3+∠4+∠2+∠3+∠4+∠5+∠1+∠5−(180×5)
=2(∠1+∠2+∠3+∠4+∠5)−900−(1)
From pentagon ABCDE,
Sum of angles of pentagon=((2×5)−4)×90 ∘
(∵ Sum of angles=(2n−4)×90 ∘ )
=6×90=540 ∘
⟹∠P+∠Q+∠R+∠S+∠T=2(540 ∘ )−900 ∘
=1080 ∘ −900 ∘
=180 ∘
=2×90
=2Rightangles
Answer:
Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) is 120000 Pa.
Step-by-step Explanation :
GivEn :
Density of water, ϱ = 10³kg/m³
Height = 12 m
g = 10m/s²
To find :
Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) =
SoluTion :
We know that,
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = \rho \times g \times h \\ \\\end{gathered}\end{gathered}
⟶Hydrostaticpressure=ρ×g×h
Substituting the values,
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = {10}^{3} \times 10 \times 12 \\ \\\end{gathered}\end{gathered}
⟶Hydrostaticpressure=10
3
×10×12
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = {10}^{4} \times 12 \\ \\\end{gathered}\end{gathered}
⟶Hydrostaticpressure=10
4
×12
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = 10000 \times 12 \\ \\\end{gathered}\end{gathered}
⟶Hydrostaticpressure=10000×12
\begin{gathered}\begin{gathered}\sf \therefore { \blue{Hydrostatic \: pressure = 120000 \: Pa}} \\ \\\end{gathered}\end{gathered}
∴Hydrostaticpressure=120000Pa
Hence, Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) is 120000 Pa.