Math, asked by Nirjara2004, 10 months ago

In the given figure , triangle ABC and triangle CPD .Prove :- BP ×PD = EP × PC​

Answers

Answered by llsmilingsceretll
32

Given :-

  • A triangle with sides ABC

To Prove :-

  • A) Prove that triangle ABC is similar to triangle ABP is similar to triangle ACP.

  • B) AP² = BP × PC

Solution :-

  • 1]AB = AC

Also

∠ABC = ∠ABP = ∠ACP

2]Since we may see it is a right angled triangle.

By using pythagoras theorem in

ΔAPB

\longrightarrowH² = P² + B²

\longrightarrowAC² = AP² + PC²

\longrightarrowAP² = AC² - PC²

ΔAPB

\longrightarrowH² = P² + B²

\longrightarrowAB² = AP² + BP²

\longrightarrowAP² = AB² - BP²

Now, By comparing

\longrightarrowAC/PC = AB/BP

\longrightarrowAC × BP = PC × AB

\longrightarrowCancel AB from both sides

\longrightarrowBP = PC

\longrightarrowAP² + AP² = AC² - PC² + AB² - BP²

\longrightarrow2AP² = AC² - PC² + AB² - BP²

\longrightarrowAs AC = AB

\longrightarrow2AP² = AB² - PC² + AB² - BP²

\longrightarrow2AP² = 2AB² - PC² - BP²

\longrightarrowAlso PC = BP

\longrightarrow2AP² = 2AB² - PC² - PC²

\longrightarrow2AP² = 2AB² - 2PC²

Divide all sides by 2

\longrightarrow2AP²/2 = 2AB² - 2PC²/2

\longrightarrowAP² = AB² - PC²

\longrightarrowAP² - AB² = PC²

Now

\longrightarrowAB² = AP² + BP²

\longrightarrowAP² - AP² + BP² = PC²

\longrightarrowBP² = PC²

Root both side

\longrightarrowBP = PC

Answered by MohammadZakariya
0

mei Mohammad zakariya hu

hlo kuch yaad aaya

insta pe h

to

meri id zakariya_khan10

Similar questions