in the given figure triangle pqr is an equilateral triangle with coordinates of q and r as (0,5) (0,-5) respectively.find the coordinates of vertex p.
Answers
Since you have not marked the no. on the x-axis, I have assumed it to be 6. The ordinate is definitely 0.
Let the coordinate of the point p be (x, y)
It is a equilateral triangle
⇒ All the lengths are equal
⇒ Distance RP= QP = RP
Find the length QR, given Q = (0, 5) and R = (0,-5):
Find the length of QP given Q = (0,5):
Find the length of RP given Q = (0,5):
Since all the 3 lengths are equal ⇒ QP = QR
√[(y - 5)² + x²] = 10
Square both sides:
(y - 5)² + x² = 100 ------------------- [ 1 ]
Since all the 3 lengths are equal ⇒ RP = QR
√[(y+5)² + x²] = 10
Square both sides:
(y + 5)² + x² = 100 ------------------- [ 2 ]
Put both equations together:
(y - 5)² + x² = 100 ------------------- [ 1 ]
(y + 5)² + x² = 100 ------------------- [ 2 ]
[1 ] - [ 2 ] :
(y - 5)² - (y + 5)² = 0
[ (y - 5) + (y + 5) ]² [ (y - 5) - (y + 5) ]² = 0
[ (y - 5 + y + 5 ]² [ (y - 5 - y - 5 ]² = 0
[ 2y ]² [-25 ]² = 0
4y² (625) = 0
2500y² = 0
y = 0
When y = 0
(y - 5)² + x² = 100
(0 - 5)² + x² = 100
25 + x² = 100
x² = 100 - 25
x² = 75
x= √75
x = 5√3
Find the coordinate of p:
x = 5√3
y = 0
p = (5√3, 0)
Answer: p = (5√3, 0)