in the given figure,two chords PQ and RS of the circle intersect at point T,such that angle STQ =123 degree and angle TQR =17 degree. find angle SPQ
Answers
Given: m(arc PCR) = 26°, m(arc QDS) = 48°
By Inscribed Angle Theorem,we get
(i) ∠PQR = 1/2 m(arc PCR)
∠PQR = 1/2 x 26º
∠PQR = ∠AQR = 13º ...(1)
(ii) ∠SPQ = 1/2m(arc QDS)
∠SPQ = 1/2 x 48º
∠SPQ = 24º ...(2)
(iii) In ΔAQR, by the Remote Interior Angle theorem,
∠RAQ + ∠AQR = ∠SRQ
∠SRQ = ∠SPQ ...(Angles subtended by the same arc)
i.e. ∠RAQ + ∠AQR = ∠SPQ
m ∠RAQ = m ∠SPQ - m∠AQR
m ∠RAQ = 24º - 13º ...[From (1) and (2)]
m ∠RAQ = 11º
Answer:
Given: m(arc PCR) = 26°, m(arc QDS) = 48°
By Inscribed Angle Theorem,we get
(i) ∠PQR = 1/2 m(arc PCR)
∠PQR = 1/2 x 26º
∠PQR = ∠AQR = 13º ...(1)
(ii) ∠SPQ = 1/2m(arc QDS)
∠SPQ = 1/2 x 48º
∠SPQ = 24º ...(2)
(iii) In ΔAQR, by the Remote Interior Angle theorem,
∠RAQ + ∠AQR = ∠SRQ
∠SRQ = ∠SPQ ...(Angles subtended by the same arc)
i.e. ∠RAQ + ∠AQR = ∠SPQ
m ∠RAQ = m ∠SPQ - m∠AQR
m ∠RAQ = 24º - 13º ...[From (1) and (2)]
m ∠RAQ = 11º