In the given figure, two straight lines AB and CD intersect at O. If ∠AOC=(3x-5)0and ∠BOC=1180, find the value of ‘x’.Also, find ∠BODand ∠AOD.
Answers
Answer:
x = 41°, ∠AOC = 62°, ∠BOD = 62°
Step-by-step explanation:
In the figure ∠AOD = ∠COB (vertically opposite anlges) as it is given AB and CD are straight lines
∴3x-5 = 118
3x = 118 +5
3x = 123
x = 123/3
x = 41°
Now, We know ∠COB = 118° and forms a linear pair with ∠AOC
∠AOC + ∠COB = 180° (linear pair)
∠AOC + 118 ° = 180°
∠AOC = 180° - 118°
∠AOC = 62°
Now, We know ∠AOC = 62°
∠AOC = ∠BOD = 62° (linear pair)
Answer:
x = 41°
∠BOD = 62°
Step-by-step explanation:
∠AOD = (3x - 5)° [Given]
∠BOC = 118° [Given]
Now,
∠AOD = ∠BOC [Vertically Opposite Angles are always equal.]
∴ (3x - 5)° = 118°
3x = 118 + 5
3x = 123°
∴ x =
x = 41°
∴ ∠AOD = (3x - 5)°
= [3(41) - 5]°
= (123 - 5)°
= 118°
Now,
∠BOD + ∠BOC = 180° [The sum of all angles on a straight line always
equals 180°]
∠BOD + 118° = 180°
∴ ∠BOD = 180° - 118°
∠BOD = 62°