In the given figure, ∠X=62°, ∠XYZ=54°. In ΔXYZ If YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively find ∠OZY and ∠YOZ.
Attachments:
Answers
Answered by
50
YXZ +XYZ + XZY =180°
62° +54° +XZY = 180°
XZY=180°-62°-54°
XZY =64°
2OZY =64°
OZY=64°/2=32°..................(1)
in the OZY OYZ +OZY +YOZ = 180°
54°/2 +32° +YOZ = 180°
YOZ = 180°- 32° - 27°
YOZ =121°...............(2)
62° +54° +XZY = 180°
XZY=180°-62°-54°
XZY =64°
2OZY =64°
OZY=64°/2=32°..................(1)
in the OZY OYZ +OZY +YOZ = 180°
54°/2 +32° +YOZ = 180°
YOZ = 180°- 32° - 27°
YOZ =121°...............(2)
Answered by
23
Answer:
∠OZY=32°
∠YPZ=121°
Step-by-step explanation:
In ΔXYZ, ∠X+∠Y+∠Z=180°........ (1)
Given that, ∠X=62° and ∠Y=54°
Hence, from equation (1) ∠Z=180°-62°-54° =64°
Now, since ZO is the bisector of ∠Z.
Hence, ∠OZY =1/2(∠Z)=1/2(64°)=32° ........ (2) (Answer)
Again, ∠OYZ =1/2(∠Y)=1/2(54°) =27° ........ (3)
{Since, YO is the bisector of ∠Y}
In ΔOYZ, ∠OZY+∠OYZ+∠YOZ =180°
⇒ 32° +27° +∠YOZ =180° {From equations (2) and (3).}
⇒ ∠YOZ= 180°-32°-27° =121° (Answer)
Similar questions