Math, asked by TEJASREDDY1234, 1 year ago

in the given figure xoy is a straight line find x o p and y o p ​

Attachments:

Answers

Answered by hukam0685
26

Step-by-step explanation:

Given:In the given figure xoy is a straight line.

To find: angle x o p and y o p

Solution:

We know that sum of all the angles on one side of straight line is 180°

Here, on line xoy

two angles are formed,

Thus

 \angle \: xop +  \angle \: yop = 180° \\  \\ (x + 15)° + (3x + 25)° = 180° \\  \\ x + 3x + 15 °+ 25 °= 180 °\\  \\ 4x + 40° = 180°\\  \\ 4x = 180° - 40° \\  \\ 4x = 140 °\\  \\ x = 35° \\  \\

So,

 \angle \: xop = x + 15° \\  \\\angle \: xop  = 35 + 15 \\  \\\bold{\pink{\angle \: xop =  50°}} \\  \\\angle \: yop = 3x + 25°  \\ \\\angle \: yop = 3 \times 35° + 25° \\  \\  = 105° + 25° \\  \\\bold{\green{\angle yop = 130°}} \\  \\

Hope it helps you.

To learn more on brainly:

1)आकृति 2 में x तथा y का मान ज्ञात कीजिए और फिर दर्शाइए कि AB||CD है

https://brainly.in/question/21677529

Answered by vs3633631
2

Step-by-step explanation:

To find: angle x o p and y o p

Solution:

We know that sum of all the angles on one side of straight line is 180°

Here, on line xoy

two angles are formed,

Thus

\begin{gathered} \angle \: xop + \angle \: yop = 180° \\ \\ (x + 15)° + (3x + 25)° = 180° \\ \\ x + 3x + 15 °+ 25 °= 180 °\\ \\ 4x + 40° = 180°\\ \\ 4x = 180° - 40° \\ \\ 4x = 140 °\\ \\ x = 35° \\ \\ \end{gathered}

∠xop+∠yop=180°

(x+15)°+(3x+25)°=180°

x+3x+15°+25°=180°

4x+40°=180°

4x=180°−40°

4x=140°

x=35°

So,

\begin{gathered} \angle \: xop = x + 15° \\ \\\angle \: xop = 35 + 15 \\ \\\bold{\pink{\angle \: xop = 50°}} \\ \\\angle \: yop = 3x + 25° \\ \\\angle \: yop = 3 \times 35° + 25° \\ \\ = 105° + 25° \\ \\\bold{\green{\angle yop = 130°}} \\ \\ \end{gathered}

∠xop=x+15°

∠xop=35+15

∠xop=50°

∠yop=3x+25°

∠yop=3×35°+25°

=105°+25°

∠yop=130°

Hope it helps you

Similar questions