Math, asked by MysticalRainbow, 5 months ago

In the given figure : ZABD = ZEBC, BD = BC and ZACB = ZEDB
Prove that AB = BE.
[Hint. ZEBD - ZABE + ZABD and ZABC = ZABE + ZEBC.
So, ZEBD = ZABC. .
Now, show that AACB = AEDB.]​

Attachments:

Answers

Answered by Anonymous
2

Answer:

\small{\fcolorbox{red}{indigo}{\small{\fcolorbox{red}{violet}{\small{\fcolorbox{red}{pink} {\small{\fcolorbox{red}{red}{\small{\fcolorbox{red}{springgreen}{\small{\fcolorbox{red}{blue}{\small{\fcolorbox{red}{yellow} {\small{\fcolorbox{red}{azure} {\small{\fcolorbox{red}{blue}{\small{\fcolorbox{red}{orange}{\huge{\fcolorbox{red}{green}{\large{\fcolorbox{blue}{red}{{\fcolorbox{orange}{aqua}{ANSWER}}}}}}}}}}}}}}}}}}}}}}}}}}

\mathfrak{ \large{\blue{ \underline{ \purple{ Given: }}}}}

Radius of circle = 20 cm

Value of π = 3.14

\mathfrak{ \large{\blue{ \underline{ \purple{ To \: Find: }}}}}

Area and perimeter of circle

\mathfrak{ \large{\blue{ \underline{ \purple{ Solution:}}}}}

\:\:\:\:\:\:\:\:\:\:\:\:\: \mathfrak{ \underline{ \green{Formula \: to \: calculate \: the \: circumference \: of \: circle}}}

\boxed{ \mathfrak{ \star \: \: \: { \red{ \large{circumference = 2 \times \pi \times radius}}}}}

According to question,

\large{ \rm \longmapsto \: \: \: \: \: \: \: circumference = 2 \times 3.14 \times 20}

\large{ \rm \longmapsto \: \: \: \: \: \: \: circumference = \boxed{ \orange{ \mathfrak 125.6 \: cm}}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \mathfrak{ \underline{ \green{Formula \: to \: calculate \: the \: circumference \: of \: circle}}}

\boxed{ \mathfrak{ \star \: \: \: \: \: \: { \red{ \large{area = \pi \times {radius}^{2} }}}}}

According to question,

\large{ \rm \longmapsto \: \: \: \: \: \: \: area = 3.14 \times {20}^{2}}

\large{ \rm \longmapsto \: \: \: \: \: \: \: area = 3.14 \times 20 \times 20}

\large{ \rm \longmapsto \: \: \: \: \: \: \: area = \boxed{ \orange{ \mathfrak{1256 \: {cm}^{2} }}}}

\mathfrak{ \large{\blue{ \underline{ \purple{ Hence:}}}}}

The area and circumference of circle is 125.6 cm and 1256 cm²

Step-by-step explanation:

{\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {blue} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@MAYU----}}}}}}}}}}}}}}}

Answered by Anonymous
3

In, ∆ACB & ∆EDB ,we have,

•BD = BC

•\angle{ACB} = \angle{EDB}

•\angle{EBD} = \angle{EBA}+\angle{ABD}\\ \angle{EBD} = \angle{ABE}+\angle{EBC}\\ \angle{EBD }= \angle{ABC}

By ASA property ∆ACB \cong ∆EDB

By Congruence, AB = BE

Similar questions