In the given figure, ZPSR = 90°, PQ = 10 cm,
QS = 6 cm and RQ = 9 cm, calculate the length
of PR.
Answers
Answer:
By Pythagoras theorem,
In ∆ PQS,
PS= √(PQ^2-QS^2)=√(100-36)= √64=8cm
Now,
In ∆PRS,
PS=8cm
RS= RQ+QS=9cm+6cm=15cm
So,
By Pythagoras theorem,
PR=√(PS^2+RS^2)=√64+225=√289= 17cm
.......!
Answer:
The the length of PR = 17 cm.
Step-by-step explanation:
This problem can be solve using Pythagoras Theorem.
This theorem is used for Right angle triangle. In right angle triangle if one of the side is unknown then we can find it by using formula:
(Hypotenuse)² = (Base)² + (Perpendicular)²
Firstly take the ΔPQR, We have
PQ = 10, QS = 6 and PS = ?
⇒ (PQ)² = (QS)² + (PS)²
⇒ 100 = 36 + (PS)²
⇒ (PS)² = 100 - 36 = 64
⇒ PS = 8
Now, taking the triangle PRS
We have, PS = 8, RS = RQ + QS = 9 + 6 = 15, and PR = ?
Using Pythagoras Theorem. We have,
(PR)² = (RS)² + (PS)²
⇒ (PR)² = 225 + 64
⇒ (PR)² = 289
⇒ PR = 17
Thus, The the length of PR = 17 cm.