In the given figures, find the values of x and y.
With complete steps
Answers
Step-by-step explanation:
(i)
70°+x=130°
x=130°-70°
x=60°
x+y+70°=180°
60°+y+70°=180°
Y+110°=180°
y=180°-110°
y=70°
(ii)
y+50°+85°=180°
y+135°=180°
y=180°-135°
y=45°
50+(y+40)+x=180
50+(45+40)+x=180
50+85+x=180
135+x=180
x=180-135
x=45
(iii)
x+30=70
x=70-30
x=40
x+y+30=180
40+y+30=180
y+70=180
y=180-70
y=110
QUESTION::
FIND THE VALUES OF X AND Y IN GIVEN FIGURES...
SOLUTION:
i) Given IN TRIANGLE ABC
<CAB = 70°
<ABC= x
<ACB= y
and < DCB = 130°
We know , 130° = 70° + <x
or, x = 130° - 70°
or , x = 60°
As we know the sum of interior angles of a triangle is 180°
we can say that 70° + 60° + y = 180°
therefore y = 180 - (70+60) = 180 - 130 = 50°
ii) Given triangle ∆ABC in which line segment CD divides the ∆ABC into two parts ∆ ABD and ∆ ACD
In triangle ACD
50°+85°+y = 180°
or, y = 180° -(50+85)
or, y = 180 - 135
or, y = 45°
In triangle BCD
< CDB = 180- 85 = 95° ( linear pair)
x = 180° - (40°+95°)
x = 180° - 135
x = 45°
iii) In the third triangle .
Angle y = 180° - 70° = 110° ( linear pair)
and x = 180°- ( 110° + 30°)
or, x = 180° - 140°
or x = 40°
CONCLUSION:
(i) x= 60°
y= 50°
(ii) x= 45°
y = 45°
(iii) x = 40°
y = 110°
_____×××_____