in the given triangle ABC, prove that
Attachments:
Answers
Answered by
16
Third answer refers to the attachment
รσℓµƭเσɳ →
1st To prove ->
a( b cosC - c cosB) = b² - c²
Proof →
We know that ,In cosine formula :-
And in
Now substituting these values in LHS :-
LHS →
a ( b cosC - c cosB)
Taking 2 as LCM
2nd To prove →
a²( cos²B - cos²C) + b²( cos²C - cos²A) + c²( cos²A - cos²B) = 0
Proof →
Taking LHS :-
a²( cos²B - cos²C ) + b²( cos²C - cos²A ) + c²( cos²A - cos²B)
Now we know that cos²a = ( 1- sin²a) so similarly changing all cos angles into sine .
→a²[ ( 1-sin²B) - ( 1-sin²C)] +b²[( 1-sin²C) - (1- sin²A)]+ c²[( 1-sin²A)-(1- sin²B)]
→a² ( sin²C - sin²B ) + b²( sin²A - sin²C) +c²( sin²B-sin²A)
As we know that a =k SinA , b= ksinB , c= ksinC ,So :-
→ k(Sin²Asin²C - sin²Asin²B + sin²Bsin²A- sin²Bsin²C +sin²Csin²B - sin²Csin²A )
→k(0)
→0 = RHS
Attachments:
Similar questions