Math, asked by tanusingh33, 1 year ago

in the given triangle ABC, prove that​

Attachments:

Answers

Answered by Anonymous
16

Third answer refers to the attachment

รσℓµƭเσɳ →

1st To prove ->

a( b cosC - c cosB) = -

Proof →

We know that ,In cosine formula :-

 \cos(c)  =  \frac{ {a}^{2} +  {b}^{2}  -  {c}^{2} }{2ab}  \\

And in

 \cos(b)  =  \frac{ {a}^{2} +  {c}^{2} -  {b}^{2}   }{2ac}  \\

Now substituting these values in LHS :-

LHS →

a ( b cosC - c cosB)

a(b. \frac{ {a}^{2} +  {b}^{2}  -  {c}^{2}  }{2ab}  - c. \frac{ {a}^{2}  +  {c}^{2} -  {b}^{2}  }{2ac} ) \\

( \frac{ {a}^{2} +  {b}^{2}  -  {c}^{2}  }{2}  -  \frac{ {a}^{2} +  {c}^{2} -  {b}^{2}   }{2}  \\

Taking 2 as LCM

(  \frac{ {a}^{2}  +  {b}^{2} -  {c}^{2}  -  {a}^{2}  -  {c}^{2} +  {b}^{2}   }{2}  \\

( \frac{2 {b}^{2}  - 2 {c}^{2} }{2} ) \\

 {b}^{2}  -  {c}^{2}  = rhs \\

hence \: proved

2nd To prove →

a²( cos²B - cos²C) + b²( cos²C - cos²A) + c²( cos²A - cos²B) = 0

Proof →

Taking LHS :-

a²( cos²B - cos²C ) + b²( cos²C - cos²A ) + c²( cos²A - cos²B)

Now we know that cos²a = ( 1- sin²a) so similarly changing all cos angles into sine .

→a²[ ( 1-sin²B) - ( 1-sin²C)] +b²[( 1-sin²C) - (1- sin²A)]+ c²[( 1-sin²A)-(1- sin²B)]

→a² ( sin²C - sin²B ) + b²( sin²A - sin²C) +c²( sin²B-sin²A)

As we know that a =k SinA , b= ksinB , c= ksinC ,So :-

→ k(Sin²Asin²C - sin²Asin²B + sin²Bsin²A- sin²Bsin²C +sin²Csin²B - sin²Csin²A )

→k(0)

→0 = RHS

hence \: proved

Attachments:
Similar questions