In the parallelogram abcd of the given figure, paq ia an obtuse angle. Two equilateral triangle abp and adq are drawn outside the paralleigram. Prove that cpq ia also an euilateral triabgle
Answers
Answered by
12
Angle PAQ + angle DAP + Angle BAD + Angle BAQ = 360 degrees
Angle PAQ + 60 degrees + (180 degrees - Angle CDA) + 60 degrees = 360 Degrees
Angle PAQ = 360 Degrees - 60 degrees (180 Degrees - Angle CDA) - 60 Degrees
Angle PAQ = 360 Degrees - 60 Degrees - 180 Degrees + Angle CDA
Angle PAQ = 60 Degrees + Angle CDA
Angle CDA + Angle ADP = Angle CDP
Angle CDA +60 Degrees = Angle CDP
Angle PAQ = Angle CDA
In triangle CDP and triangle AQP
AQ = CD (AQ = AB = CD)
AP = DP (sides of equailateral triangle)
Angle PAQ = Angle CDA
Triangle CDP = Triangle AQP
Triangle PQ = CP
CQ = CP = PQ
Triangle C'PQ is an equailtaral triangle.
Angle PAQ + 60 degrees + (180 degrees - Angle CDA) + 60 degrees = 360 Degrees
Angle PAQ = 360 Degrees - 60 degrees (180 Degrees - Angle CDA) - 60 Degrees
Angle PAQ = 360 Degrees - 60 Degrees - 180 Degrees + Angle CDA
Angle PAQ = 60 Degrees + Angle CDA
Angle CDA + Angle ADP = Angle CDP
Angle CDA +60 Degrees = Angle CDP
Angle PAQ = Angle CDA
In triangle CDP and triangle AQP
AQ = CD (AQ = AB = CD)
AP = DP (sides of equailateral triangle)
Angle PAQ = Angle CDA
Triangle CDP = Triangle AQP
Triangle PQ = CP
CQ = CP = PQ
Triangle C'PQ is an equailtaral triangle.
Similar questions
Geography,
8 months ago
English,
1 year ago
Hindi,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago