Math, asked by ellabarquin3285, 1 month ago

In the picture given below O is the center and A, B, C are points on the circle. If AB=BC, prove that angle AOB =angle BOC

Answers

Answered by Anonymous
0

Step-by-step explanation:

Given: AB and AC are two equal chords of a circle with centre O.

OP⊥AB and OQ⊥AC.

To prove: PB=QC

Proof: OP⊥AB

⇒AM=MB .... (perpendicular from centre bisects the chord)....(i)

Similarly, AN=NC....(ii)

But, AB=AC

⇒ AB/2 = AC/2

⇒MB=NC ...(iii) ( From (i) and (ii) )

Also, OP=OQ (Radii of the circle)

and OM=ON (Equal chords are equidistant from the centre)

⇒OP−OM=OQ−ON

⇒MP=NQ ....(iv) (From figure)

In ΔMPB and ΔNQC, we have

∠PMB=∠QNC (Each =90° )

MB=NC ( From (iii) )

MP=NQ ( From (iv) )

∴ΔPMB≅ΔQNC (SAS)

⇒PB=QC (CPCT)

Similar questions