In the property of indices
![{a}^{m} \div {a}^{n} = {a}^{m - n} {a}^{m} \div {a}^{n} = {a}^{m - n}](https://tex.z-dn.net/?f=+%7Ba%7D%5E%7Bm%7D++%5Cdiv++%7Ba%7D%5E%7Bn%7D++%3D++%7Ba%7D%5E%7Bm+-+n%7D++)
Taking m = n, show that
![{a}^{0} = 1 {a}^{0} = 1](https://tex.z-dn.net/?f=+%7Ba%7D%5E%7B0%7D++%3D+1)
Answers
Answered by
1
Given,
a^m ÷ a^n = a^(m - n)
if m = n
then,
a^m ÷ a^m = a^(m - m)
a^m/a^m = a⁰
On cancelling
1 = a⁰
therefore, a⁰ = 1
hence proved!!
Similar questions