Math, asked by yashormasandal9072, 6 months ago

In the quadratic equation 2x² + 8x + 10= 0?

Answers

Answered by InfiniteSoul
6

\sf{\underline{\boxed{\green{\large{\bold{ Question}}}}}}

  • solve the equation using formulae \sf 2x^2 + 8x + 10 = 0

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies 2x^2 + 8x + 10 = 0

⠀⠀⠀⠀⠀⠀⠀

  • compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 2

☯ b = 8

☯ c = 10

⠀⠀⠀⠀⠀⠀⠀

  • now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (8)^2 - 4 \times 2 \times 10

\sf\implies D = 64 - 80

\sf\implies D = - 16

\sf{\underline{\boxed{\blue{\large{\bold{ D = - 16}}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -( 8 )  \pm\sqrt {-16} }{2\times 2 }

\sf\implies x = \dfrac{ -8 \pm -4 }{4}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ - 8 + 4 }{ 4 }

\implies x =  \dfrac {-4}{4}

\implies x = -1

\sf{\underline{\boxed{\purple{\large{\bold{ x = - 1 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ - 8 - 4 }{ 4 }

\implies x =  \dfrac {-12}{4}

\implies x = -3

\sf{\underline{\boxed{\purple{\large{\bold{ x = -3 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = -1 \: or \:-3 }}}}}}

Similar questions