Math, asked by rubis6687, 5 hours ago

In the special Product, (x+7)(x-8)(x+6), the co-efficient of x^2 is --------------​

Answers

Answered by Anonymous
35

Given :

 \tt \large (x + 7)(x + 8)(x + 6)

To Find :

The coefficient of

Before the Question let's know about the coefficients.

Coefficient is an integer that is multiplied with a single term or with a polynomial. (with sign).

Hope you catch it So, lets get started.

To find the coefficient of x² first we will multiply \tt \large (x + 7)with  \tt \large (x + 8)

and then we will multiply the resultant with  \tt \large (x + 6)

So,

 \tt \large (x + 7) \times (x + 8)

 \tt  \: ↳(x \times x + x \times 8 + 7 \times x + 7 \times 8)(x + 6)

 \tt \: ↳( {x}^{2}  + 8x + 7x  + 56)(x + 6)

 \tt \: ↳( {x}^{2}  + 15x  + 56)(x + 6)

Now multiplying \tt ( {x}^{2}  + 15x  + 56)with  \tt \: (x + 6)

So,

↳ \tt \small ( {x}^{2}  + 15x  + 56) \times (x + 6)

↳ \tt \small ( {x}^{2}  \times x + 15x \times x  + 56 \times x +  {x}^{2} \times 6 + 15x \times 6 + 56 \times 6 )

↳ \tt \small( {x}^{3}  + 15 {x}^{2}   + 56x + 6 {x}^{2}  + 90x + 336)

Proceeding with simple calculation

↳ \tt \small ( {x}^{3}  + 15 {x}^{2}   + 6 {x}^{2}  + 90x + 56x + 336)

↳ \tt \small ( {x}^{3}  + 21 {x}^{2}    + 146x + 336)

Removing the bracket

↳ \tt \small {x}^{3}  + 21 {x}^{2}    + 146x + 336

Henceforth,

Clearly the coefficient of x² is  \sf \color{teal} + 21

━━━━━━━━━━━━━━━━━━━━†

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\tt\color{aqua}{●\mid} \underbrace{\color{#c92786}{Thank\:Ü}}\color{aqua}{\mid●}\\

Similar questions