Math, asked by alanmutheriyil123, 5 months ago

In the triangle ABC ,<B =900 AC=5cm , sin C =4/5
a) What is the length of AB?
b) Find cos C.​

Answers

Answered by SuitableBoy
69

{\huge{\rm{\underline{\underline{Question:-}}}}}

Q) In a triangle ABC , \angle B = 90° , AC = 5 cm , sin C = \dfrac{4}{5}

a) What is the length of AB .

b) Find cos C .

 \\

{\huge{\rm{\underline{\underline{Answer\checkmark}}}}}

 \\

\frak{Given}\begin{cases}\textsf{ABC\;is\;a\;right\;angled\;triangle.}\\ \textsf{Angle \;B = 90\degree }\\ \sf{AC=5cm}\\ \sf{sin\:C=\rm\dfrac{4}{5}}\end{cases}

To Find :

  • Length of AB
  • cos C

 \\

Solution :

 \\

{\underline{\textit{\textbf{Finding \;AB}}}}

 \rm \mapsto \: sin \: c =  \frac{4}{5}  \\

 \mapsto \rm \:  \frac{perpendicuar}{hypotenuse}  =  \frac{4}{5}  \\

\mapsto\rm \; \dfrac{AB}{AC} =\dfrac{4}{5}

\mapsto\rm\; \dfrac{AB}{\cancel{5}}=\dfrac{4}{\cancel5}

\mapsto\underline{\boxed{\rm AB=4cm}}

  \\

{\underline{\textit{\textbf{Finding\;cos\;c}}}}

We have to first find the length of BC ..

Using Pythagoras Theorem -

AB² + BC² = AC²

4² + BC² = 5²

16 + BC² = 25

BC² = 25 - 16

BC² = 9

BC = 3 cm .

Now ,

 \rm \mapsto \: cos \: c =  \frac{base}{hypotenuse}  \\

\rm\mapsto \; cos\;c=\dfrac{BC}{AC}

 \mapsto \rm \: cos \: c =  \frac{3\: cm}{5 \: cm}  \\

 \mapsto   \underline{\boxed{ \rm{cos \: c =  \frac{3}{5}}} }

So , Required answer :

  1. AB = 4 cm
  2. cos c = \dfrac{3}{5}
Attachments:
Similar questions