Math, asked by anirudhsri2004, 9 months ago

in the triangle ABC p 3,1 q 5, 6 and are -3, 2 are the midpoints of the ab BC and CA respectively find the vertices of the triangle ABC and show the area of triangle ABC is equals to 4 ×area of triangle pqr​

Answers

Answered by arunachalam35
2

Step-by-step explanation:

this is answer. use the area formula to prove the area is four times

Attachments:
Answered by Agastya0606
2

Given:  P (3,1), Q (5, 6) and R (-3, 2 ) are the midpoints of the AB, BC and CA

To find:  the vertices of the triangle ABC, show the area of triangle ABC is equals to 4 ×area of triangle PQR

Solution:

  • So now, It is given that the P,Q,R are the mid points of the sides of the triangle AB, BC,CA respectively.
  • So let the co-ordinates of A be (X,Y), B be (L,M) and C be (O,P)
  • So, to find X co-ordinates

                ( X + L ) / 2 = 3

                X + L = 6             ................(i)

  • Similarly,

                ( Y + M ) / 2 = 1

                Y + M = 2               ........ ...(ii)

  • Similarly,

               ( L + O ) = 10             . ...(iii)

               ( M + P ) = 12           .......(iv)

               ( O + X ) = -6           .........(v)

               ( P + Y ) = 4             ..........(vi)

  • Now subtract (iii) from (i)

              (X+L=6)-(O+L=10)

              X-O=-4...................... ...(vii)

  • We already know that

               X+O=-6

  • By adding (vii) and (v), we get:

               2X=-10

               X = -5

  • By putting this value in (i)and (iii)
  • We get

               L=6+5=11

               O=10-11=-1

  • Solving for the Y co-ordinates

               Y + M = 2

               P + M = 12

  • By subtracting (iv) from(ii)

              Y - P = -10. ...(viii)

  • Now by adding (vi) and(viii)

                    2Y=-6

                    Y=-3

  • By putting this value in (ii) and (iv)
  • M=2+3=5

               P=12-5=7

  • Therefore, the co-ordinates of the vertices are

                A(X,Y)=A(-5,-3)

                B(L,M,)=B(11,5)

                C(O,P)=C(-1,7)

          Area= (1/2)  x { X1 (Y2-Y3) +X2 (Y3-Y1) + X3 (Y1-Y2) }

  • Area of triangle formula
  • Area OfΔABC=(1/2) {-5(5-7)+11(7+3)-1(-3-5)}

                       =(1/2)(10+110+8)

                       =1/2*128

                       =64 sq.units

  • Area of ΔPQR=(1/2){ 3(6-2)+5(2-1)-3(1-6)

                       =(1/2) (12+5+15)

                       =(1/2)*32

                       =16sq. units

  • By dividing arΔABC by arΔPQR we get

                       =AR(ABC)/AR(PQR)

                       =64/16

                          =4

Answer:

           Hence, it is proved that the area ΔABC Is 4*area ΔPQR

Similar questions