In thesequestions 4 (i) and Q.5 (i)which identity should we use
Attachments:
Answers
Answered by
2
4.i.). a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)
a=3x
b=y
c=z
5.). (a-b+c)²=a²+b²+c²-2ab-2bc+2ac
a=(1/4)a
b=(½)b
c=1
a=3x
b=y
c=z
5.). (a-b+c)²=a²+b²+c²-2ab-2bc+2ac
a=(1/4)a
b=(½)b
c=1
Gautam22121998:
u didn't asked for the solution...
Answered by
1
4.
(i) Given 27x^3 + y^3 + z^3 - 9xyz
= > (3x)^3 + y^3 + z^3 - 3 * (3x) * yz.
We know that a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
= > (3x + y + z)(9x^2 + y^2 + z^2 - 3xy - yz - 3zx).
5.
(i) Given (1/4 a - 1/2 b + 1)^2
= > (a/4 - b/2 + 1)^2
= > (a/4 - b/2 + 1)(a/4 - b/2 + 1)
(i) Given 27x^3 + y^3 + z^3 - 9xyz
= > (3x)^3 + y^3 + z^3 - 3 * (3x) * yz.
We know that a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
= > (3x + y + z)(9x^2 + y^2 + z^2 - 3xy - yz - 3zx).
5.
(i) Given (1/4 a - 1/2 b + 1)^2
= > (a/4 - b/2 + 1)^2
= > (a/4 - b/2 + 1)(a/4 - b/2 + 1)
Similar questions