In this figure AB and CD intersect at O. If angle AOC + angle BOE = 70° , find angle BOE and reflex angle COE.
![](https://hi-static.z-dn.net/files/dbb/ec9b717eea385b40b4b5a98a451b4e55.jpg)
Answers
Explanation:
given:BOD=40°
AOC+BOE=70°
AOC=40° (vertically opposite angle)
AOC+BOE=70°
40°+BOE=70°
BOE=70°-40°=30°
COE=AB-(linear pair)AOC+BOE
=180°-40°+30°
=180°-70°
=110°
Answer:
‹BOE = 30° & REFLEX ANGLE = 250°
Explanation:
∠AOC + ∠BOE = 70°
∠AOC + ∠COE + ∠BOE = 180°
[ linear pair ]
So,
if ∠AOC + ∠BOE = 70°
so,
→ 70° + ∠COE = 180°
→ ∠COE = 180 - 70
→ ∠COE = 110°
.
∠BOD = ∠AOC [ Vertically Opposite Angles ]
.
Now,
→ ∠AOC + ∠COE + ∠BOE = 180°
→ 40° + 110° + ∠BOE = 180°
→ 150° + ∠BOE = 180°
→ ∠BOE = 180° - 150°
→ ∠BOE = 30°
.
∠BOD + ∠DOA = 180° [Liner Pair]
→ 40° + ∠DOA = 180°
→ ∠DOA = 180° - 40°
→ ∠DOA = 140°
Hence,
reflex angle ( ∠COE ) = ∠AOC + ∠DOE + ∠BOD + ∠BOE
reflex angle ( ∠COE ) = 40° + 140° + 40° + 30°
reflex angle ( ∠COE ) = 250°
HENCE, PROVED.