. In this physical world, while explaining physics give its scope. How physics is related to other branch of science, society and technology?
. Explain different types of forces which exists in nature? Also explain various laws of conservation
Pls tell answer of both the question
pls send fast its urgent
Answers
Answer:
How physics is related to other branch of science, society and technology?
Society’s reliance on technology represents the importance of physics in daily life. Many aspects of modern society would not have been possible without the important scientific discoveries made in the past. These discoveries became the foundation on which current technologies were developed. Discoveries such as magnetism, electricity, conductors and others made modern conveniences, such as television, computers, phones and other business and home technologies possible. Modern means of transportation, such as aircraft and telecommunications, have drawn people across the world closer together — all relying on concepts in physics.
Different Forces in Nature
Weak Force : The weak force is one of the four fundamental forces that govern all matter in the universe (the other three are gravity, electromagnetism and the strong force). While the other forces hold things together, the weak force plays a greater role in things falling apart, or decaying.
strong interaction : is the mechanism responsible for the strong nuclear force, and is one of the four known fundamental interactions, with the others being electromagnetism, the weak interaction, and gravitation.
Electromagnetism is a branch of physics involving the study of the electromagnetic force, a type of physical interaction that occurs between electrically charged particles. Wikipedia
Gravity, or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tide
Law of Conversation
physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time.[1] This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all the forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite. Classically, conservation of energy was distinct from conservation of mass; however, special relativity showed that mass is related to energy and vice versa by E = mc2, and science now takes the view that mass–energy is conserved.
Conservation of energy can be rigorously proven by Noether's theorem as a consequence of continuous time translation symmetry; that is, from the fact that the laws of physics do not change over time.
A consequence of the law of conservation of energy is that a perpetual motion machine of the first kind cannot exist, that is to say, no system without an external energy supply can deliver an unlimited amount of energy to its surroundings.[2] For systems which do not have time translation symmetry, it may not be possible to define conservation of energy. Examples include curved spacetimes in general relativity[3] or time crystals in condensed matter physics.[4][5][6][7]