in this question x represent theta so pls help me
prove that
cotx.cot(60°-x).cot(60°+x)=cot3x
chapter trigonometry class 11
Answers
Answered by
6
Step-by-step explanation:
1/tanx × 1/tan(60-x) × 1/tan(60+x)=1/tan3x
- tanx × tan(60-x) × tan(60+x)=tan3x
- tanx × tan60-tanx/1+tan60tanx × tan60+tanx/1-tan60tanx=tan3x
- (because tan(x+y)=tanx+tany/1-tanxtany)
- tanx × (root3-tanx/1+root3tanx) × (root3+tanx/1-root3tanx)=tan3x
- tanx × (root3)²-tan²x/1²-(root3tanx)²=tan3x
- tan(3-tan²x/1-3tan²x)
- 3tanx-tan³x/1-3tan²x
- (this is the formula of tan3x...
- tan3x
- (so...cotx.cot(60-x).cot(60+x)=cot3x)
Similar questions