In this question, x^y stands for x raised to the power y. For example, 2^3=8 and 4^1.5=8. If a,b are real numbers such that a+b=3, a^2+b^2=7, the value of a^4+b^4 is?
Answers
Answer:
a^4 + b^4 = ((3 + √5 ) / 2)^4 + ((3 - √5 ) / 2)^4
Step-by-step explanation:
we are given that
a + b = 3 ...(1)
a² + b² = 4 ....(2)
From equation (1) implies
a = 3 - b
Putting a = 3 - b in equation (2) we get
(3 - b)² + b² = 7
Using formula (a - b)² = a² + b² - 2ab we get
9 + b² - 6b + b² = 7
⇒ 2b² - 6b + 9 - 7 = 0
⇒ 2b² - 6b + 2 = 0
Dividing by 2 on both sides we get
b² - 3b + 1 = 0
Using quadric formula we get
b = [ 3 + √(9 - 4) ] / 2 = ( 3 + √5) / 2
Or
b = [ 3 - √(9 - 4) ] / 2 = ( 3 - √5) / 2
Now Putting the value of b = ( 3 - √5) / 2 in equation (1) we get
a + ( 3 - √5) / 2 = 3
⇒ a = 3 - ( 3 - √5) / 2
⇒ a = (3 + √5) / 2
Similarly when
b = ( 3 + √5) / 2
a = (3 - √5 ) / 2
NOW
when
b = ( 3 + √5) / 2
a = (3 - √5 ) / 2
a^4 + b^4 = ((3 - √5 ) / 2)^4 + ((3 + √5 ) / 2)^4
And when
b = ( 3 - √5) / 2
a = (3 + √5 ) / 2
Then
a^4 + b^4 = ((3 + √5 ) / 2)^4 + ((3 - √5 ) / 2)^4